
Avoiding Performance Fluctuation in Cloud Storage ……M. Pradhaban Raja et al.,

107

Indian Journal of Communication Engineering and Systems (IJCES)
 Vol.3.No.1 2015 pp 107-117.
Available at: www.goniv.com
Paper Received: 04-04-2015
Paper Accepted: 14-04-2015

Paper Reviewed by: 1. R. Venkatakrishnan 2. R. Marimuthu
Editor: Prof. P.Muthukumar

AVOIDING PERFORMANCE FLUCTUATION IN CLOUD STORAGE

M. Pradhaban Raja
Information Technology

AMS Engineering College
Namakkal

ABSTRACT

File distribution and storage in a cloud storage environment is usually handled by storage device providers
or physical storage devices rented from third parties. Files can be integrated into useful resources that
users are then able to access via centralized management and virtualization. Nevertheless, when the
number of files continues to increase, the condition of every storage node cannot be guaranteed by the
manager. High volumes of files will result in wasted hardware resources, increased control complexity of
the data center, and a less efficient cloud storage system. Therefore, in order to reduce workloads due to
duplicate files, we propose the index name servers (INS) to manage not only file storage, data de-
duplication, optimized node selection, but also file compression, chunk matching, real-time feedback
control, IP information. To manage and optimize the storage nodes based on the client-side transmission
status by our proposed INS, all nodes must elicit optimal performance and offer suitable resources to
clients. In this way, not only can the performance of the storage system be improved, but the files can also
be reasonably distributed, decreasing the workload of the storage nodes.

Avoiding Performance Fluctuation in Cloud Storage ……M. Pradhaban Raja et al.,

108

I. Introduction

DATA IN a cloud storage environment is usually
stored in the space offered by third-party
companies. Instead of being provided by a single
host, the storage space is integrated and distributed
through centralized management. Generally
speaking, the commonly seen storage protocols are
NAS and SAN. Nevertheless, due to the great
number of users and devices in the cloud network,
the managers often cannot effectively manage the
efficiency of various storage nodes. As a result, the
complexity of controlling the hardware and the
network traffic is increased and the performance of
the cloud network is decreased bandwidth as well
as the server workload, and also degrade efficiency.

In addition, the cloud network covers a great scope
and domain and the data written on storage devices
by different users might be similar or identical. In
addition, because of user habits and available
resources, most users access similar data, operate
the same functions, or repeat similar behaviours.
Consequently, the system manager can no longer
guarantee the optimal status of each storage node
in the cloud system. With the enlargement of the
network, data integration bottleneck and waste of
resources may occur as the system processes
duplicate and redundant data, despite the flexibility
and rapidity of the cloud storage system.

Cloud computing services can be classified as either
com-

puting or storage. As far as data storage is
concerned, al-though numerous schemes have been
presented to improve chunking and data
compression, the waste of resources caused by
revisions or changes is often overlooked. For
instance, a file that is reuploaded to the server may
seriously affect the network.

 This study uses the index name server (INS) to
process cloud storage functions, including file
compression, chunk matching, data de-duplication,

real-time feedback control, IP information, and
busy level index monitoring. Therefore, our
proposed INS can manage and optimize the storage
nodes according to the client-side transmission
conditions so that every storage node can maintain
its optimal status and provide suitable resources to
clients.

 The rest of this paper is organized as follows.
Section II introduces related works and some
background information. Section III presents our
proposed INS. Section IV illustrates the cloud-
based file chunking and management scheme.
Section V describes real-time feedback controls.
We offer our conclusions in Section VI.

II. Background And Related Works

In addition to the basic background techniques,

such as run-length encoding (RLE), dictionary
coding, calculation for the
digital fingerprinting of data chunks, distributed
hash table (DHT), and bloom filter

A. Run-Length Encoding (RLE)

RLE is a data compression method that converts
repeated characters into a single character for the
length of the run. Notably, the RLE technique is
often used for compressing black and white images
into strings of black and white pixels. Because the
length of the run does not distribute equiprobably, a
statistical method is usually adopted for encoding,
i.e., Huffman coding

B. Dictionary Coding

Dictionary coding is another kind of data
compression algorithm that encodes data by
compressing repeated char-acters and strings. Using
some codes to substitute for these characters and
strings, we can compress a document because of the
correlation of the symbols. A dictionary is just a
synopsis of the strings and codes. Practical
dictionary coding algorithms aim to encode data
dynamically and choose a simple notation to reduce

Avoiding Performance Fluctuation in Cloud Storage ……M. Pradhaban Raja et al.,

109

redundant characters. Dictionary coding algorithms
can be divided into two types. The first, which
includes LZ77 and Lempel–Ziv–Storer–Szymanski
(LZSS), compares the characters; these check
whether the characters have appeared previously
and then replace the characters by strings that have
occurred earlier in the text. The second type
includes LZ78 and Lempel–Ziv–Welch (LZW), and
uses an index instead of a point to represent the
input strings.

C. Calculation for Digital Fingerprint of Data
Chunks

Through hash algorithms, hash functions can
generate an exclusive fixed-sized digital fingerprint
for each data chunk. In order to transform the
variable-length data into fixed-length data, hash
functions scatter and remix the data through
mathematical functions to produce a fixed-sized
value shorter than the raw data. This calculated
hash value, the fingerprint or the signature of the
raw data, is usually expressed by strings of random
characters and numbers.

A digital fingerprint is the essential feature of a
data chunk. The optimal state is such that each data
chunk has its unique fingerprint, and different
chunks have different fingerprints. As long as the
data with the same primary structures have the
same hash values, we can say that data with the
same hash values must have the same original data,
and that data with different hash values must have
different original input data. Nevertheless, the input
of a hash function does not thoroughly correspond
with the output. Supposing two hash values are the
same, this simply implies that the original inputs
might be the same. But, different data inputs with
the same hash values indicate that different data
chunks might generate the same fingerprints. We
call this situation hash collision. Compared with
secure hash algorithms (SHA), the MD5 hash
function presents a lower possibility of hash
collisions making it a good candidate for
operations, such as fingerprint calculation and
recognition.

D. Distributed Hash Table (DHT)

As one of the most commonly used data retrieval
methods in the distributed computing system, the
DHT aims to efficiently distribute data to different
nodes in the system to guarantee that the message
reaches the peer with a specific given key value.
Using DHTs, we can develop more complex
distributed network architectures, such as
distributed file systems, peer-to-peer file sharing,
and web caching. Instead of being managed by the
central node, this kind of service allows different
nodes to take charge of parts of the data to construct
all the information in the DHT network. Moreover,
a DHT node does not maintain and possess all the
information in the network, but stores only its own
data and those of its neighbouring nodes. This
greatly reduces hardware and bandwidth
consumption. Essentially, DHTs highlight the
following features.

1) Decentralization: there is no central
coordination mech-anism in the system.

2) Scalability: the system can maintain efficiency

even the number of nodes becomes
increasingly larger.

3) Fault tolerance: the system can be reliable (to a

certain extent) even when the number of nodes
keeps changing.

To ensure the distribution, querying efficiency,

and accuracy of data, most DHTs use consistent
hashing; this alters only the key/value of the
neighboring nodes when the number of nodes
changes, but nodes outside of the region will be
unaffected. Compared to traditional hashing tables
that have to remap the key/value when any change
in the key/value occurs, consistent hashing can
avoid the enormous change of network information
when the number of nodes changes. To remap the
key/value, the data in one of the DHT nodes might
be moved to another node, which would waste
bandwidth resources. Therefore, to efficiently
support large numbers of nodes joining or leaving,
the reconfiguration must be reduced as much as

Avoiding Performance Fluctuation in Cloud Storage ……M. Pradhaban Raja et al.,

110

possible.

E. Bloom Filter

Structurally, the bloom filter is composed of a
long binary vector and a series of random mapping
functions. The bloom filter is presented to test
whether an element is included in the set. Generally
speaking, to test whether an element is a member of
a set or not, collecting all the elements for further
comparison is the most common method, e.g.,
linked lists and tree structures. However, with the
increase of the elements in the set, more storage
space will be needed and the retrieval speed will be
slowed down. Due to the presentation of hash
functions, the bloom filter can map an element to a
point in the bit array via a hash function, compare
whether the point in the array is equal to 1, and
determine whether the element exists in the set. In
addition, to improve the accuracy, more than one
hash function will be adopted to increase different
mapping points.

 Fig. 1. Hierarchical INS
architecture.

 Fig. 2. INS control diagram.

III. Index Name Server (INS)

As an index server resembling domain name
system (DNS), the INS uses a complex P2P-like
structure to manage the cloud data.Although similar
to DNS in architecture and function, the INS
principally handles the one-to-many matches
between the storage nodes’ IP addresses and hash
codes. Generally speaking, three main functions of
INS include:

1) switching the fingerprints to their
corresponding storage nodes;

2) confirming and balancing the load of the

storage nodes;

3) fulfilling user requirements for transmission as
possible.

Each INS has its own specific database in the

domain that stores the fingerprints and their
corresponding storage nodes to optimize the file
transmissions. Nevertheless, if we use few INSs to
monitor the file system in a WAN cloud network
environment, a large portion of the workload will
be allocated to the INSs. Thus, according to the
current DNS structure, we propose to separate the
INSs based on their domains and loading capacity,
and use the hierarchical management structure to

Avoiding Performance Fluctuation in Cloud Storage ……M. Pradhaban Raja et al.,

111

mitigate the burden of the INSs.

A. INS Architecture

Based on the database, the INSs adopt the stack
structure of DNS, manage the storage nodes in their
domain, and process users’ file-access
requirements. Although the INSs are similar to
DNS in structure and functions, the INSs mainly
query and control the data between fingerprints and
storage nodes, and coordinate the transmissions by
the feedback control between storage nodes and
clients The hierarchical INS architecture is shown
in Fig. 1.

As displayed in Fig. 2, the INSs can be regarded
as the central managers of the nodes and have
server–client relation-ships with one another in a
hierarchical architecture to record the fingerprints
and the storage nodes of all data chunks.

 Fig. 3. INS transmission flowchart.

Instead of taking down the information of chunk
fragments, the INSs record only the locations of the
fingerprints and manage the storage nodes. Every
storage node offers its condition and data for INSs
to record and users demand the INSs for correlative
information during the transmissions. When a novel
INS is built up, this INS will choose the storage
node with the maximum throughput in its domain
as the backup node. Because the INSs focus on
computing and transmitting data, we do not
concentrate on the storage space, but on the
efficiency of the databases and the throughput of
data transmission.

B. INS Querying Process

Every domain-based INS has databases of
fingerprints and storage nodes. The database of
fingerprints records the finger-prints of different
files and their corresponding storage nodes. When a

user looks for specific fingerprints, the INS queries
and confirms if the file already exists in the storage
node within the domain before taking the next step.
While the clients want to access data, they can use
the fingerprints obtained as the index and query the
INS of the upper layer, which searches for the best
access node based on the content in the database in
case the inefficiency of the access node or data loss.
The INS transmission flowchart is shown in Fig. 3.

Different requirements will lead to different query
results. If the file that the client wants to access
does not exist in the storage nodes in the local
domain, the INS queries the INS of the upper layer.
With the help of the Bloom Filter, the INS can find
out the domain of the INS with that file chunk and
also the accurate storage node through the
destination INS for transmission.

Avoiding Performance Fluctuation in Cloud Storage ……M. Pradhaban Raja et al.,

112

Fig. 4. INS flowchart.

Because we consider the workload of the INSs in
different layers, the INSs in this article are divided
into several layers and have the server–client
relationships with one another in a hierarchical
architecture, that is, the INS of the upper layer
provides service to the INS of the lower layer only.
The burden of each INS thus can be distributed
efficiently.

C. De-Duplication

De-duplication is a technique for eliminating
duplicate copies of data through a de-duplication
scanning process, which improves the system
performance and decreases the bandwidth occupied
by data transmission. This technique divides a file
into chunks and calculates a unique 128-bit hash
code of each chunk by MD5, i.e., the only signature
of the chunk.

Because of its uniqueness, every fingerprint is
regarded as the identification and fingerprint of a
data chunk. After check-ing a requested fingerprint,
the INSs will confirm whether the file chunk of the
same fingerprint exists in the storage space. If not,
the system continues the following uploading
procedure and assigns tasks to the storage node.
Fig. 4 displays the INS flowchart.

Therefore, in hash algorithms, hash functions can
convert the variable length data into a unique fixed-
sized digital fingerprint. In other words, the

significant feature of hash functions is to map the
keys to the same value and the values calculated by
hash functions are thus called hash values, the
signature or fingerprint of the raw data. Hash values
are usually expressed by strings of random
characters and numbers.

Current de-duplication-related techniques and
research have all aimed at deleting duplicate data at
the server side, but none has been proposed to
discuss data de-duplication and redundant data
elimination at the client side. When a file is sent to
the cloud storage device, no matter modified or not,
the file must be divided into chunks and
compressed before sending out, which results in the
waste of the processing time

Fig. 5. Client-side chunk matching and differences
in chunk comparison.
IV. Cloud Storage File Chunking And Compression

Structurally, the INS architecture consists of
INSs, IPs, and clients, in which the INSs are
responsible for controlling the whole network and
handling the upload, download, and storage of data.

1) Synchronization: The nodes that store IPs keep
reporting related information to the INSs. This
includes the stor-age space, the memory space,
the network bandwidth, the current array
number, and the surplus hardware resources.
Through the information, the INSs can find the
best storage nodes for clients to store data.

2) Match and lookup: Before uploading files, the

clients first send the INSs a table, which
records the fingerprints of the file chunks.
According to the fingerprints, the INSs can
match and lookup the fingerprints already

Avoiding Performance Fluctuation in Cloud Storage ……M. Pradhaban Raja et al.,

113

stored in the INSs.

3) Assignment: Without determining the same
fingerprints, the INSs will arrange specific IP
addresses for the clients to upload files.
Matching the fingerprints can accelerate data
matching and delete duplicate data.

4) Transmission: The clients transmit the files to

the storage nodes assigned by the INSs and the
storage nodes will report the resource spent on
the task (such as CPU capacity, memory space,
bandwidth, and storage space) back to the
INSs for regulation and record.

A. Chunk

The chunking method in this paper divides a file
into fixed-sized chunks and assigns numbers to
each chunk according to the data match. Before the
file chunking, the chunks are defined as (C): C =
C1, C2, C3,, Cn. After partitioning a new file,
we give new serial numbers to the chunks. To
restore the chunks to a complete file, all we need to
do is to arrange the chunks according to the serial
numbers and decompress the chunks to get the
original file.

We propose to assign numbers to the chunks so
that after the file is downloaded from the server and
modified by the user, our method can compare the
differences between the original chunks and the
modified ones. As shown in Fig. 5, the modified
chunks are defined as (CC) CC = CC1, CC2, CC3,

. . . ,CCn. Once any differences between the original
chunks and the modified chunks are found, we
redeploy and reupload the modified chunks. The
chunk size after user modification is
unfixed.Therefore, client-side and INS-side chunk
matching are different.

1) INS-Side Chunk Matching: After the file is
compressed and chunked by the client, a unique
128-bit hash value generated by MD5 is sent to the
INSs for server-side chunk matching. Once
determining the duplicate chunks, the INSs inform

the client to send the nonduplicate chunks to the IPs
designated by the INSs. Thus, the INS-side chunk
matching is based on the uniqueness of MD5.

2) Client-Side Chunk Matching: After the client
down-loads the chunks from the server and restores
the file, the chunks might be different from the
original chunks due to user modification or
alteration. As shown in Fig. 5, the client-side chunk
matching compares the chunks of the original file
and the modified chunks.

B. Client-Side Chunk Comparison

This paper defines the chunk sizes based on user
update ratios. Once the file is altered or modified by
the user, our proposed method will compare the
original file with the altered version. Supposing the
altered data chunks differ from the original ones,
such as C3 versus CC3 and C5 versus CC5 as shown
in Fig. 5, our method compresses, partitions, and
uploads the file again. Equation (1) gives the
definition for chunk comparison; when the contrast
value between the original chunk and the altered
one is not equal to 1, the chunk will be compressed
and partitioned again. The number of the
repartitioned chunks, K, is defined in (2). Equation
(3) defines the total number of the original chunks,
TC or TCC, while (4) defines RC, the rate of
change.

1) When the contrast value between the original
chunk and the altered one is not equal to 1, the
chunk will be compressed and partitioned
again

Cn _=

1 (1)

CCn

2) The number of the repartitioned chunks (K)

 Cn
Cn

 C
C

C
C

K = if

 > or < 1, K = K +
1 (2)

 n=1 CCn

Avoiding Performance Fluctuation in Cloud Storage ……M. Pradhaban Raja et al.,

114

3)
The total number of the original chunks

(TCC)

 TCC = CCn (3)

4)
The rate of change

(RC)

RC =

 K

× 100% (4)

TC
C

We use (1) to (3) to calculate the rate of change.
Equation

(1) determines whether the original chunks and the
modified ones are the same. If the contrast value is
larger or smaller than 1, it means that the chunks
have been modified. Next, (2) is used to calculate
the number of the repartitioned chunks, K. Then, K,
the number of the repartitioned chunks, divided by
TCC, the number of the original chunks, equals the
rate of change

Fig. 6. INS controlling process.

 V. Real-Time Feedback Control

A. Performance Parameters of Storage Nodes and
Multipoint

Transmission

The performance parameters of storage nodes
greatly in-fluence the whole network. To bring the
storage nodes into full play based on their
efficiency, we define a parameter metric for files,
which refers to the number of files that a storage
node can actually process. When a storage node
starts for the first time, the node examines its own

performance. However, every storage node has
different hardware (such as CPU, RAM, and hard
disk), and the actual efficiency of the storage node
cannot be determined according only to hardware
specifications. Therefore, modifying the measuring
method is necessary. We propose to test the
maximum write/read speed before the system
achieves 90% of the load and to get the access
efficiency of the storage node based on its available
maximum bandwidth. Since the chunk size is fixed,
our proposed scheme is able to figure out the
performance metric of all storage nodes in the INS
environment

Bc
Bs =
 (5
)

[Ndownload + (Nupload−Fu)] × (1 − Fd)

In (5), Bs is the bandwidth provided by the storage
node, n is the number of storage nodes for the
following transmissions, Ndownload and Nupload are the
number of files that the client will download and
upload, respectively, and Bc is the bandwidth that
the client will use for transmission. Moreover, Fd is
the network delay time after several transmissions.
To include Fd, we can ensure that the INSs assign
the most suitable storage node with the most
appropriate bandwidth to the client so that the
utilization efficiency of the storage nodes can be
en-hanced. Fu signifies the number of duplicate
files determined by the INS databases. The
duplicate file chunks will not be reuploaded again
to the storage node.

Moreover, the intervals between packet
transmissions usu-ally result in extra network delay.
When transmitting file chunks, the storage node
might face unnecessary waiting time due to some
protocol packets (e.g., ACK packets). Since the
current network bandwidth reaches a certain level,
only the waiting time caused by 10-byte protocol
packets is re-garded as the network delay.
Consequently, as for the trans-mission completed
every second, the delay time caused by protocol
packets is

Avoiding Performance Fluctuation in Cloud Storage ……M. Pradhaban Raja et al.,

115

Avoiding Performance Fluctuation in Cloud Storage ……M. Pradhaban Raja et al.,

116

where K is the stream number, Bc, the client-side
bandwidth, Ps, the packet size, and Dr , the
incidence of delay. With this equation, we can
control the incidence of delay caused by the waiting
time and limit the stream number to attain the
optimal performance of the storage node.

B. Feedback Control System Procedures

Because of external interferences, such as
network delay, the transmission value in fact is not
equal to the bandwidth that users can use. Thus,
while choosing the storage node, the INSs might
overestimate users’ capacity and result in waste of
efficiency. So, we propose to improve this problem
by feedback control. Regarded as an automatic
control system, the INS keeps receiving the
feedback of the former transmissions and adjusting
the parameters to reach the optimal performance of
storage nodes. Fig. 6 displays the INS controlling
process:

1) R(k): The initial expected value;

2) F(k): The output feedback;

3) M(k): The modified feedback;

4) Fs(k): The modified internal function of the
storage node;

5) D(k): The external interference factor (random

variable);

6) X(k): The result within the storage node;

7) Y (k): The actual result;
8) KINS: The optimal node determined by the INS

based on the feedback.

At the initial stage, the INS uses the client-side
parameters to compute the bandwidth that the client
will use for the storage node as R(k). Next, the
system adjusts the parameters according to the
results of the former transmission, M(k), with the
aim of adjusting the client-side parameters and

allocating the suitable storage node to the client
proposed method, other backup mechanisms only
search for the neighboring nodes with better
performance, without con-sidering whether this
node is idle or sufficient for data backup.

After the new temporary backup is generated, the
INS that was initially requested to appoint nodes
will rearrange the deployment. Once B(i), the busy
level of the requested node increases, the INS will
alter the connection target of L(i), and lead the later
demanders to the nodes for temporary backup. If
the demand increases, the backup continues. If B(i)
is reduced to B(c), the INS changes L(i) and leads
the demanders back to the original requested node.
In order to save the network resources, the data for
temporary backup will be de-duplicated.

Fig. 8 shows that when the target node, A, reveals
B(i) = B(b), the requested INS first analyzes the
source of the demands. If 60% of the demands
come from remote sites and Q(i)is too high, it
means that the path from the node to the demander
is too far or not good. At this time, the requested
INS uses R(i) to calculate the suitable area for
temporary backup and analyzes Q(i) and B(i) to
choose the optimal node as B for remote backup.
Without wasting too many resources in crossing
domains, this method can limit the distance
between the requested end and the backup node.
Once the new temporary backup is created, the
requested INS immediately leads the demanders to
the new nodes for tem-porary backup. For the time
being, the INS changes L(i) and leads the
demanders X and Y to their adjacent requested
nodes. The data for temporary backup also will be
de-duplicated to save

VII. Conclusion

This paper proposed the INS to process not only

file compression, chunk matching, data de-
duplication, real-time feedback control, IP
information, and busy level index mon-itoring,.
Major contributions of this paper include the
following.

Avoiding Performance Fluctuation in Cloud Storage ……M. Pradhaban Raja et al.,

117

1) By compressing and partitioning the files
according to the chunk size of the cloud file
system, we can reduce the data duplication
rate. The processed files are encoded into the
signature by MD5 fingerprint for the INSs to
match, file, designate to the storage servers,
and provide necessary uploading information
for the clients. After downloading and
modifying the files, the clients compress and
partition the modified chunks only, encode
these chunks by MD5 fingerprint and
reupload the chunks.

2) According to the transmission states of storage
nodes and clients, the INSs received the
feedback of the previous transmissions and
adjusted the transmission parameters to attain
the optimal performance for the storage
nodes.

References

[1] Chen. C.-Y, Chang K.-D, and Chao H.-C (Mar.
2011), “Transaction pattern based anomaly
detection algorithm for IP multimedia subsystem,
IEEE Trans.Inform. Forensics Security, vol. 6, no.
1, pp. 152–161
[2] Connell .J.B (Jul. 1973), “A Huffman–
Shannon–Fano code,” Proc. IEEE, vol. 61, no. 7,
pp. 1046–1047
[3] Costa L. B and Ripeanu. M (Oct. 2010),
“Towards automating the configuration of a
distributed storage system,” in Proc. 11th
IEEE/ACM Int. Conf. Grid Comput., pp. 201–208.
[4] Dinerstein.J,Dinerstein.S, Egbert.P.K,
andClyde.C.W(Dec. 2008), “Learning based fusion
for data deduplication,” in Proc. 7th Int. Conf.
Mach. Learning Appl. , pp. 66–71.
[5] Sun.X, Li.K, and Liu.Y(Jun. 2009), “An
efficient replica location method in hierarchical P2P
networks,” in Proc. 8th IEEE/ACIS Int. Conf.
Comput. Inform. Sci. , pp. 769–774.
[6] Tin-Yu Wu, Member, IEEE, Jeng-Shyang Pan,
Member, IEEE, and Chia-Fan Lin(March 2014),”
Improving Accessing Efficiency of Cloud Storage
Using De-Duplication and Feedback Schemes”,
ieee Systems Journal, Vol.8, No. 1,

[7] Urdaneta.G,Pierre.G, and Van Steen.M(Jan.
2011), “A survey of DHT security techniques,”
ACM Computing.
[8] Wu. T.-Y,Lee W.-T, and Lin(C. F)(Apr. 2012),
“Cloud storage performance enhancement by real-
time feedback control and de-duplication,” in Proc.
Wireless pp.1–5.

